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Abstract

Although Transformer can be powerful for modeling vi-
sual relations and describing complicated patterns, it
could still perform unsatisfactorily for video-based facial
expression recognition, since the expression movements
in a video can be too small to reflect meaningful spatial-
temporal relations. To this end, we propose to decompose
the modeling of expression movements of a video into the
modeling of a series of expression snippets, each of which
contains a few frames, and then boost the Transformer’s
ability for intra-snippet and inter-snippet visual model-
ing, respectively, obtaining the Expression snippet Trans-
former (EST). For intra-snippet modeling, we devise an
attention-augmented snippet feature extractor to enhance
the encoding of subtle facial movements of each snippet.
For inter-snippet modeling, we introduce a shuffled snip-
pet order prediction head and a corresponding loss to im-
prove the modeling of subtle motion changes across sub-
sequent snippets. The EST obtains state-of-the-art perfor-
mance, demonstrating its superiority to other CNN-based
methods. Our code and the trained model are available at
https://github.com/DreamMr/EST

*Corresponding author

1 Introduction

Video-based Facial Expression Recognition (FER) is im-
portant for understanding human emotions and behav-
iors. Therefore, FER has a wide range of applications
in social life, such as multimedia information process-
ing, driver monitoring, lie detection, etc. [3]. FER aims
to classify a video into one of several basic emotions, in-
cluding happiness, anger, disgust, fear, sadness, neutral,
and surprise. The task of FER is difficult due to several
challenges, namely, long-range spatial-temporal represen-
tation, excessive noises from irrelevant frames, and es-
pecially, inherently small and subtle facial movements in
FER videos.

To tackle the issues of FER, existing methods com-
monly apply convolutional neural networks (CNNs) [21]
or long-short term memory (LSTM) [15]. However,
most of the existing FER methods usually model spatial-
temporal visual information without involving effective
visual relation reasoning mechanisms [21]. For example,
many methods [17, 33, 36] only use static frames selected
from the manually defined peak (apex) frames, neglect-
ing the intrinsic relationships between visual cues of adja-
cent frames. Sequence-based methods [30, 7, 15] attempt
to capture motion cues by encoding spatial-temporal in-
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Figure 1: Comparison between a vanilla Transformer
method and the proposed expression snippet Transformer
(EST) for modeling subtle facial expression movements
in facial expression recognition (FER). The vanilla Trans-
former (left) tends to focus only on the frame with peak
expression patterns and can be easily affected by noises
such as other non-expression changes, thus obtaining sub-
optimal results. By decomposing videos into snippets, the
EST (right) improves the modeling of intra-snippet and
inter-snippet subtle facial changes, respectively, and can
achieve more robust FER. The yellow square marker rep-
resents the highest attention in the video.

formation within their models, while they still perform
weakly in describing subtle expression movements in
FER videos if not using overwhelmingly large model ca-
pacities [25].

The recent successful Transformer approaches [6, 2,
39] in computer vision has allowed us to take advantage
of its powerful relation reasoning ability for understand-
ing FER videos. In general, the Transformer [32] has
shown to be particularly effective for translating an in-
put sequence to a target sequence by modeling the re-
lations between features. Accordingly, for video-based
FER, we believe that the Transformer has a great poten-
tial of describing subtle expression movements more ro-
bustly. Despite the potential advantages, it is non-trivial
to directly apply a vanilla Transformer on the FER video
frames considering that the subtle facial expression move-
ments within videos can be too difficult to be modeled
properly by the vanilla Transformer. For example, as

shown in Fig. 1, the per-frame visual information ( i.e.
raw pixels on each frame) may contain noises such as
non-expression changes (head poses, speaking, and so on)
that can easily affect the recognition performance of the
Transformer. Furthermore, the subtle expression move-
ments would make the Transformer only focus on the vi-
sual cues from frames with peak expression changes and
neglect plenty of beneficial spatial-temporal information
from other periods of videos. This limits the potential of
Transformer to encode the motion information of the en-
tire video comprehensively and achieve more robust ex-
pression recognition.

To tackle the above problems for applying Transformer
on FER videos, we first propose to decompose the mod-
eling of facial movements of the entire video into the
modeling of a series of small expression snippets. Each
expression snippet is a video clip with a few adjacent
frames of the input video covering a limited amount
of expression changes. Then, by employing the Trans-
former over the snippets, we can augment the model-
ing of intra-snippet and inter-snippet expression move-
ments, respectively. In particular, we introduce a novel
attention-augmented snippet feature extractor (AA-SFE)
to improve the modeling of intra-snippet visual changes
for the Transformer. In the AA-SFE, we apply a deep con-
volutional neural network (DCNN) to extract per-frame
visual features and develop a novel hierarchical attention-
augmentation architecture to obtain the representation of
facial movements within each snippet. The snippet rep-
resentations generated with the AA-SFE are subsequently
fed into the encoder-decoder structure of a Transformer
to perform recognition based on snippet-level relations.
Meanwhile, we devise a shuffled snippet order prediction
(SSOP) head with a corresponding loss for the Trans-
former to improve the modeling of inter-snippet visual
changes. By using SSOP, the Transformer can encode
the information from all snippets more comprehensively,
thereby delivering a more robust expression movement
representation of the entire video. Overall, we briefly
name our proposed method as expression snippet Trans-
former (EST).

To sum up, the major contributions of this paper are
summarized as follows:

• We propose the expression snippet Transformer
(EST) to achieve accurate video-based facial expres-
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sion recognition (FER). To the best of our knowl-
edge, our approach is the first effective snippet-based
Transformer method for video-based FER.

• To enhance the Transformer’s ability to model intra-
snippet and inter-snippet expression movements, we
propose the attention-augmented snippet feature ex-
tractor (AA-SFE) and the shuffled snippet order pre-
diction (SSOP), respectively. Both techniques ef-
fectively tackle the problems of Transformer-based
FER and substantially improves the recognition per-
formance.

• Evaluations on four challenging video facial expres-
sion datasets, i.e., BU-3DFE, MMI, AFEW, and
DFEW, demonstrate the superiority of our proposed
EST over existing popular methods. State-of-the-art
performance can be achieved with EST on the evalu-
ated datasets. We will release our source code upon
acceptance.

2 Related Work
Frame-based methods for video-based FER. The
frame-based methods can be divided into two groups:
frame aggregation methods that strategically fuse deep
features learned from static-based FER networks [25] and
peak frame extraction methods that focus on recogniz-
ing the peak high-intensity expression frame [37]. Meng
et al. [25] proposed frame attention networks to adap-
tively aggregate frame features in an end-to-end frame-
work and achieved an accuracy of 51.18% on the AFEW
8.0 dataset. Moreover, Yu et al. [37] proposed a deeper
cascaded peak-piloted network (DCPN) that enhances the
discriminative ability of features in a cascade fine-tuning
manner. The DCPN achieved the best accuracies of
99.9% on the CK+ dataset [22]. However, these methods
depend only on static frames and lack powerful modeling
of the spatial-temporal relationships of expressions in the
video.

Dynamic sequence-based methods for video-based
FER. In order to explore the spatial-temporal represen-
tation of expressions, dynamic sequence-based methods
take a video sequence as a single input and utilize both
textural information and temporal dependencies in the se-
quence for more robust expression recognition [15, 25].

Recently, the Long Short-Term Memory (LSTM) and
C3D are two widely-used spatial-temporal methods. Kim
et al. [15] proposed a new spatio-temporal feature repre-
sentation learning for FER by integrating C3D and LSTM
networks, which is robust to expression intensity varia-
tions. Although the C3D networks can capture the spatial-
temporal change of an expression, the C3D networks in-
troduce expensive space- and computational complexity
to learn subtle expression movements more effectively.

A more related study of FAN [25] introduces an at-
tention module to refine the visual features for FER. It
first estimates per-frame attention to obtain refined fea-
tures and then employs two fully-connected layers inter-
pret the attentional features, which is less adaptive to di-
versified features and is also easier to be affected by triv-
ial information. Different from the motivation of FAN,
we propose AA-SFE mainly to explore the intra-snippet
relations, so that more valuable information about emo-
tion can be highlighted and trivial information could be
depressed. This is beneficial for the later Transformer to
better model subtle changes in a video. Meanwhile, the
attention implementation strategies of AA-SFE and FAN
are very different. In AA-SFE, we follow a self-attention
structure for the first level and use cosine-similarity to im-
plement the attention at the second level. The applied self-
attention allows us to make it compatible with different
popular Transformer networks. Meanwhile, the cosine-
similarity used here follows the concept of routing mech-
anism between capsules [28] and can achieve more appro-
priate weighting for different snippet features.

Transformer in different tasks. Transformer was
introduced by Vaswani et al. [32] as a new attention-
based building block for machine translation. Trans-
former included self-attention layers to scan through each
token in a sequence and learn the tokens’ relationships
by aggregating information from the whole sequence, re-
placing RNNs in many tasks, such as natural language
processing (NLP), speech processing, and computer vi-
sion [8, 6, 2, 39]. Recently, Nicolas et al. expanded the
basic Transformer architecture to the field of object de-
tection and proposed the DETR algorithm [2]. Girdhar et
al. proposed an action Transformer to aggregate features
from the spatial-temporal contexts around persons for ac-
tion recognition in a video [8]. However, applying the
vanilla Transformer to capture subtle expression move-
ments in an untrimmed video is still challenging due to
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Figure 2: The training pipeline of the EST for video-based FER. Using expression snippets, we apply the AA-SFE
and SSOP to improve Transformer’s ability for respectively modeling intra-/inter-snippet expression movements and
relations, thus achieving robust FER.

the noises and the limited motion variations within input
frames. Although Former-DFER [39] has applied Trans-
formers to model spatial and temporal information via
frame relations for video-based FER, it is simply based
on per-frame feature without explicit and effective mech-
anisms to tackle the problem of subtle facial changes.

3 Expression Snippet Transformer

3.1 EST Architecture
The overall EST architecture is illustrated in Fig. 2.
Firstly, we collect expression snippets from the input
video. For each snippet, we apply an attention-augmented
snippet feature extractor (AA-SFE) to extract per-snippet
features. Then, we employ a Transformer with a shuf-
fled snippet order prediction (SSOP) head to help achieve
more robust expression understanding. In the follow-
ing sections, we will subsequently explain the Expression
snippets, Transformer, AA-SFE, and SSOP.
Expression Snippets. We decompose the input video into
a series of snippets to augment the Transformer’s ability
to model subtle visual changes within each snippet and
across different snippets, respectively. Formally, given
an input FER video C, we decompose it into a series of
smaller sub-videos: C = {C1, C2, ......Cn}, where Ci

represents the i-th sub-video and n is the total number
of sub-videos. Each sub-video Ci refers to an expression
snippet that contains several adjacent frames of the video.

All the snippets have the same length, and they follow
consecutive orders along time.
Transformer Architecture. We first extract snippet fea-
tures with AA-SFE, which will be discussed later. With
the snippet features, a Transformer is applied here to
model the expression movements across snippets and dis-
cover a more robust emotion representation for FER. We
follow the typical Transformer formulation and apply a
multi-head attention-based encoder-decoder pipeline for
the processing. In general, the multi-head attention es-
timates the correlation between a query tensor and a key
tensor and then aggregates a value tensor according to cor-
relation results to obtain an attended output. We would
like to mention that our paper mainly follows the formu-
lation of DETR[2] to define the Transformer. As a re-
sult, the employed Transformer uses several decoder lay-
ers with query embeddings to translate features. Rather
than using the formulation of standard visual Transformer
for image classification like ViT [6], we found that the
DETR formulation that attempts to use object query em-
bedding rather than class tokens could be easier to un-
derstand in expression recognition, thus we use its imple-
mentation strategy to define the Transformer. In fact, we
analyze that the emotion query in the decoder may share
a similar function with the class token used in ViT [6],
both of which would tend to accumulate useful informa-
tion through Transformer layers. For more details of the
Transformer, please refer to [32].

In our approach, we employ the encoder to encode
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snippet features and then use the decoder to translate the
encoded features into a more robust expression represen-
tation. Let Ri ∈ Rd denote the extracted snippet fea-
ture of Ci with a size of d, and R = {R1, R2, ......Rn}.
We feed R to the encoder of the Transformer in EST. In
the encoder, for each head of the multi-head attention, we
perform linear projections on a snippet feature Ri to ob-
tain the corresponding query vector qi, key vector ki, and
value vector vi, respectively. All the qi, ki, vi are vectors
of size d as well.

Then, we stack different snippets’ query vectors, key
vectors, and value vectors to obtain a query tensor Q,
a key tensor K, and a value tensor V , respectively.
Q,K, V ∈ Rn×d. Afterward, we perform self-attention
across the snippets based on the obtained Q, K, and V .
In addition, we apply a snippet positional encoding to de-
scribe the positions of snippets within a video, following
the sine and cosine positional encoding [32]. The output
of the encoder is the encoded snippet features H ∈ Rn×d:

H = A(Q,K, V ) = softmax(
Q KT

√
d

)V, (1)

where A(·) represents the self-attention. In this study,
we employ 3 encoder layers, each with 4 attention heads.
Our original intention is to reduce the complexity of the
employed Transformer while still maintaining its power.
Therefore, we experimentally halve the number of en-
coder layers and the number of attention heads used in
the DETR method [2]. More experiments about selecting
these meta-parameters are provided in section 4.4.4.

After encoding snippet features with self-attention, the
decoder phase then applies cross-attention to decode the
encoded features H into an emotion representation T and
T ∈ Rd. Our introduced emotion query embedding rep-
resents the query embedding in a Transformer network,
which is similar to how the object query embedding is
defined in DETR [2]. It is defined as a 512-dimentional
weight vector in the Transformer. To obtain a proper emo-
tion query embedding, we follow the training procedure
of the DETR [2] and optimize its weight values together
with the Transformer. During the training, we randomly
initialize the emotion query embedding at first and then
optimize its weights according to the final objective func-
tion. We use the encoded feature H to calculate both key
and value tensors in the decoder. In practice, we stack 3

decoder layers, each with 4 attention heads, to progres-
sively refine the decoding results.

After the encoder-decoder processing, we make the
Transformer provide two outputs, forming two prediction
heads. The first head, built upon a 3-layer perception net-
work, is the expression recognition prediction, classifying
the T into different expression types. The second head is
the SSOP, which estimates the correct snippet order since
snippets are shuffled. We will discuss the details of SSOP
later.

3.2 Attention-augmented Snippet Feature
Extraction

Figure 3: The detailed architecture of the AA-SFE.

Directly applying the Transformer on raw frames can
be sub-optimal due to visual noises within pixels, mak-
ing it difficult to obtain robust expression representa-
tion. Using snippets, we boost the Transformer to better
model intra-snippet expression movements by introduc-
ing the AA-SFE which improves the encoding of spatial-
temporal information across frames within a snippet.

Fig. 3 shows the structure of an AA-SFE. In partic-
ular, with the help of normal DCNNs, such as a pre-
trained ResNet-18, the AA-SFE applies a hierarchical at-
tention augmentation for modeling intra-snippet informa-
tion. The hierarchical attention aims to gradually extract
a more representative feature of a snippet, progressively
filtering out less meaningful non-expression information
to reduce the negative impacts of noises within per-frame
features. We mainly apply the attention from two-level
hierarchy to model subtle visual changes. The first level
extracts frame-level attention, and the second focuses on
extracting snippet-level global attention.

For the first-level hierarchy, we investigate frame-level
relation to obtaining attention. Similar to the Transformer,
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we apply self-attention here for relation modeling. Math-
ematically, we use rj,i to represent the feature vector of
the j-th frame in the i-th snippet. We extract the global
average pooling output of a DCNN as the per-frame fea-
ture: rj,i ∈ Rd. Suppose each snippet has J frames. By
stacking all the features rj,i from the i-th snippet, we ob-
tain the tensor Ii ∈ RJ×d. Since we only consider frames
of a single snippet at this stage, we drop the symbol i
here for simplicity, i.e., I = Ii, rj = rj,i in this part.
Using linear projections, we transform I into three ten-
sors: query tensor IQ, key tensor IK , and value tensor
IV . Then, we apply self-attention described in Eq.1 on
IQ, IK , IV to obtain the attended feature I ′ ∈ RJ×d.

In the second-level hierarchy, we introduce the snippet-
level global information to further refine representations
of snippets. Firstly, we summarize the I ′ into a unified
general feature vector. Then, we estimate the relations
between the general feature and per-frame features. The
obtained relations are later used to re-weight per-frame
features for refinement. Lastly, the refined features are
reduced to a single representation to describe the whole
snippet. More specifically, we denote the symbol r̂′ as the
general feature vector of I ′, with a size of d. It is obtained
by performing max pooling on I ′ across frames. Then,
we estimate the relation between r̂′ and per-frame fea-
tures using cosine similarity. We denote r′j as the feature
in I ′ correspond to the j-th frame. We compute cosine
similarity αj between r̂′ and each r′j :

αj = cos(r′j , r̂
′) =

r′j · r̂′

∥r′j∥ · ∥r̂′∥
, (2)

where ∥ · ∥ means Euclidean norm. With the relation esti-
mated by αj , we can identify which frame contains more
deviated information that could be more likely to contain
noise with non-expression. Thus, we have the summa-
rized snippet feature by re-weighting and aggregating per-
frame features based on:

Ri =

∑
j αj · r′j∑

j αj
. (3)

To sum up, the self-attention of AA-SFE first provides
powerful relation modeling to facilitate the encoding of
frame-level spatial-temporal information. Then, we in-
troduce the second hierarchy with cosine similarity-based

attention modeling to consider the global motion infor-
mation of a snippet to help further resist noises existing
in per frame. According to Eq. 2 ∼ 3, the attention can
identify the more useful intra-snippet visual change infor-
mation and facilitate the computation of a more focused
snippet feature Ri ∈ Rd. We experimentally prove that
the AA-SFE delivers better snippet features comparing to
a normal self-attention-based Transformer.

3.3 Shuffled Snippet Order Prediction

With the snippet features R and the Transformer, we
can estimate expressions of videos. However, we ob-
serve that the Transformer with AA-SFE could still fo-
cus only on the snippet with peak expression changes and
neglects the rest of the parts of a video. This situation
happens because the cross-attention modeling mechanism
of Transformer probably easily overlooks the slight mo-
tion changes across subsequent snippets. In practice, the
Transformer usually fails to deliver the comprehensive
inter-snippet relation modeling for all the snippets and
thus can be easily distracted by noisy information in the
peak snippet. To make the Transformer model expression
motions more comprehensively and avoid the negligence
of subtle visual changes from off-peak snippets, we fur-
ther introduce a shuffled snippet order prediction (SSOP)
head with corresponding loss to assist training the EST.
The algorithm of the SSOP is shown in Algorithm 1.

Algorithm 1 The Pseudo Code of the SSOP.
Input: FER video C;Permuted order S
Output: Predicted permuted order probability
p(S|O)

1: {C1, ..., Cn} ← C
2: Shuffle the snippet order according to the S
3: Collect featuers: Oi = Ri + T
4: Concat features: O = Concat([O1, ..., On])
5: Predict the snippet order probability p(S|O)
6: Update SSOP head and emotion information T by

Eq. 6

To train the Transformer with SSOP, we mainly shuf-
fle the snippets randomly and make the Transformer pre-
dict this shuffled snippet order. For example, we have 7
snippets of a video and assign an index to each snippet,
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i.e., S = (1, 2, 3, 4, 5, 6, 7). We can randomly re-arrange
the 7 snippets’ indexes according to a specific permuta-
tion, such as S1 = (2, 4, 5, 7, 1, 3, 6), which is 1 of the
7!=5,040 possible permutation orders. For simplicity, we
randomly select 10 permutation orders for training the
SSOP. Then, among all the generated orders, we sample
one order and re-arrange the snippets accordingly. The
snippets with a shuffled order are later sent to the EST.

It is worth mentioning that we fuse the T with the
R ∈ R7×d to obtain the features used for predicting shuf-
fled orders, obtaining a temporal order sensitive feature
O ∈ R7×d as described in Algorithm 1. This is because,
after extracting the general emotion information T , we
find that it is difficult for T to encode detailed order infor-
mation via the Transformer. Meanwhile, R contains more
information on the shuffled snippet order and can com-
plement the T in the SSOP and facilitate the EST to learn
better on the inter-snippet relations (achieving an relative
increase of 6.8% on AFEW in the experiments). We fur-
ther apply three fully connected layers on the O to de-
fine the SSOP head which predicts the current permuted
shuffling order. The prediction is obtained according to a
classification output. Therefore, training the Transformer
with the SSOP involves maximizing a posterior probabil-
ity (MAP) estimate, where the related conditional proba-
bility density function is:

p(S|C1, C2, ..., Cn) = p(S|O1, ..., On)

n∏
i=1

p(Oi|Ci),

(4)
where Oi is the feature vector in O for the i-th snippet. Ci

represents i-th snippet.
In general, the SSOP mainly helps the Transformer

learn to focus on snippets with more meaningful visual
cues rather than only looking at the central snippet. With-
out SSOP, although we have positional encoding in the
Transformer, the Transformer tends generate the highest
attention weights only for the snippet covering the middle
of a video and motion information from off-peak snip-
pets is usually not well encoded due to very subtle fa-
cial changes. This can affect the recognition if the salient
emotion cues occur in other parts of the input video. We
analyze that the reason for this phenomenon is that most
of the emotion videos are normalized so that the largest
emotion changes occur during the middle. To avoid this,
we introduce the SSOP aiming to break the dependence

of emotion recognition to the middle of the input video
by randomly shuffling the video content orders, so that
salient emotion changes can occur at different periods of
the video. Meanwhile, only shuffling snippet orders may
also disturb the learning on inter-snippet relations, thus
we only sample a few shuffling orders before training and
make the network predict the shuffling order during train-
ing to learn the inter-snippet relations better. Besides, the
SSOP also enriches the number of expression change pat-
terns for training without requiring additional manual an-
notation.

3.4 Optimization Objectives

For training, the EST has two objectives. The first one
is a FER classification loss Lcls, and the second one is
a shuffled snippet order prediction loss LS . We use the
cross-entropy loss for optimization. Formally, the FER
loss Lcls can be written as:

Lcls= −EŶC,YC
[YClogŶC ], (5)

where YC denotes the facial expression label for each
video, C indexes a training video, and ŶC denotes the
probabilities of facial expressions predicted by the EST.

To identity the shuffled snippet order, the order predic-
tion loss function LS for SSOP is based on:

LS = −EŜC,SC
[SClogŜC ], (6)

where ŜC denotes the permutation type of the shuffled or-
der predicted by the EST, and SC is the ground truth one-
vs-all label indicating the correct permutation type.

The overall objective function L of the EST is the sum
of a classification loss Lcls and SSOP loss LS . Mathe-
matically, the L can be written as:

L = Lcls +
1

n
· LS , (7)

where n is the number of snippets. The n is used to av-
erage over snippets and avoid the excessive impact of LS

during training.
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4 Experimental Results

4.1 Datasets
To evaluate our approach, four face expression datasets
were used: BU-3DFE dataset [35], MMI dataset [31],
AFEW8.0 dataset [5], and DFEW dataset [14]. The more
detailed information about the four datasets is shown in
Table. 1.

BU-3DFE [35]: 3D facial expressions annotated with
6 emotion labels, i.e., anger, disgust, happiness, fear, sad-
ness, and surprise. BU-3DFE contains 606 3D facial ex-
pression sequences captured from 101 subjects. Each ex-
pression sequence contains nearly 100 frames.

MMI [31]: A total of 205 expression sequences were
collected from 30 subjects. The expression sequences
were recorded at a temporal resolution of 24 fps. Each ex-
pression sequence of the dataset was labeled with one of
the six basic expression classes (i.e., anger, disgust, fear,
happiness, sadness, and surprise).

AFEW [5]: The AFEW serves as an evaluation plat-
form for the annual EmotiW since 2013. Seven emotion
labels are included in AFEW, i.e. anger, disgust, fear,
happiness, sadness, surprise, and neutral. AFEW con-
tains videos collected from different movies and TV se-
rials with spontaneous expressions, and also contain lots
of aforementioned non-expression noises, such as head
pose changes, speaking-related mouth movements, oc-
clusions, and illuminations. AFEW is divided into three
splits: Train (738 videos), Val (352 videos), and Test (653
videos).

DFEW [14]: The DFEW is a large-scale unconstrained
dynamic facial expression database, containing 16,372
video clips extracted from over 1,500 different movies.
It contains 12,059 single-label video clips and also in-
cludes seven emotion labels, i.e. anger, disgust, fear, hap-
piness, sadness, surprise, and neutral. Similar to AFEW,
the DFEW also contains the non-expression visual cues
that could distract recognition, e.g., head pose changes
and speaking-related mouth movements.

4.2 Snippet Extraction and Implementation
Details

Snippet Extraction. We unified the input video length
to 105 frames via interpolation and clipping operation

Table 1: The detailed information of the used datasets.
Dataset Frame rates Mean clip lengths Std. of clip lengths

BU-3DFE 24∼25 99.67 9.95
MMI 25 89.24 35.38

AFEW 24∼25 50.09 26.26
DFEW 23.98 79.26 44.72

and detected face regions of each frame to the size of
224×224 via the Retinaface [4]. Then, we randomly se-
lected one of the first 30 frames as the starting frame, and
extracted the following 75 consecutive frames to form a
video. Next, we split the 75 frames into 7 sub-videos,
each of which had 15 frames, with five frames overlap-
ping between each sub-video. To enhance expression
movement variation, 5 frames were randomly sampled
from each sub-video to form a new sub-video which is
an expression snippet. In particular, if encountering over-
length videos like 715-frame videos, we still follow the
above scheme to obtain snippets. we do have 7*5=35
frames in total for training and testing all the considered
videos. However, these 35 frames do not create new con-
tents. They represent 7 5-frame snippets rather than 1 35-
frame clip. We show detailed ablation study of snippet
settings in later ablation study.

Experimental setting. We used the Pytorch for im-
plementing the EST. The key training parameters include
initial learning rate (0.0001), cosine annealing schedule
to adjust the learning rate, mini-batch size (8), and warm
up. The experiments were conducted on a PC with In-
tel(R) Xeon(R) Gold 6240C CPU at 2.60GHz and 128GB
memory, and NVIDIA GeForce RTX 3090. Following the
setting of other compared methods, we conducted a 10-
fold person-independent validation on the BU-3DFE and
MMI, a Train/Val set validation on the AFEW, and a 5-
fold validation on DFEW dataset. The BU-3DFE dataset
was used for cross-validation during parameter selection.
We kept these parameters unchanged and followed the ex-
perimental setup the same as [33, 25, 39] to perform ex-
periments on the other datasets, which have very different
data domains.

Baseline structure. In this study, we mainly follow the
typical definition of the Transformer structure [32], which
is a multi-head attention-based encoder-decoder pipeline,
to define our network. In particular, for the baseline struc-
ture, we first use a pre-trained ResNet18 [10] to extract
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Table 2: Comparison results on the BU-3DFE dataset.
Note: the best result is highlighted in bold while ∗ in-
dicates the result is reproduced by author.

Methods #Input frame amount Feature setting WAR/UAR(%)
FAN [25]∗ 35 frame-based 84.17
DeRL [33] 1 peak frame-based 84.17
C3D [30] 75∼100 sequence-based 82.18
ICNP [40] 75∼100 sequence-based 83.20
C3D-LSTM [26]∗ 35 sequence-based 79.17
Transformer(Baseline)∗ 35 sequence-based 85.60
Our EST 35 snippet-based 88.17

per-frame feature, and then employ 3 encoder layers fol-
lowed by another 3 decoder layers to progressively trans-
late the extracted features into final expression recogni-
tion results. Each of the employed encoder layer consists
a series of self-attention operations and multi-layer per-
ception operations, and each of the decoder layer consists
a series of cross-attention operations and multi-layer per-
ception operations. Both of the self- and cross-attention
operations use 4 head to split the processing. For more
details, we refer readers to [32].

In addition, in our EST, the Transformer structure is
the same as the baseline but with different inputs. As de-
scribed in Sec. 3.2, we use AA-SFE to extract features
that are later fed into the Transformer for processing. The
AA-SFE collects different groups of features from adja-
cent frames to form different snippets. In each snippet, we
apply a hierarchical attention augmentation to compute a
512-dimensional feature vector to represent this snippet.
Later, the output feature vectors from different snippets
are stacked together and then sent to the Transformer for
later processing.

Evaluation metrics. Additionally, consistent with the
previous research [39, 14], we choose two different vali-
dation metrics, i.e., the unweighted average recall (UAR)
and weighted average recall (WAR) to evaluate FER per-
formance on class-uneven datasets like MMI, AFEW and
DFEW, while on the class-uniform BU-3DFE dataset,
since the results of UAR and WAR are the same, we
only use the average accuracy (i.e., WAR) to evaluate our
model. The weights are the number of instances in each
class. We use Multiply–Accumulate Operations (MACs)
to evaluate model complexity [27].

Table 3: Comparison results on the MMI dataset. Note:
the best result is highlighted in bold while ∗ indicates the
result is reproduced by author.

Methods Feature setting WAR(%) UAR(%)
DeRL [33] frame-based 73.23 -
WMDCNN [38] frame-based 78.20 -
FAN [25]∗ frame-based 86.49 85.56
AUDN [20] peak frame-based 75.85 -
CER [17] peak frame-based 70.12 -
Ensemble Network [29] peak+neutral frame 91.46 -
LSTM [15]∗ sequence-based 70.27 70.48
LPQ-TOP+SRC [13] sequence-based 64.11 -
SAANet [19] sequence-based 87.06 -
WMCNN-LSTM [38] sequence-based 87.10 -
Transformer(Baseline)∗ sequence-based 90.50 90.03
Our EST snippet-based 92.50 90.31

4.3 Overall Performance

4.3.1 Experiments on the BU-3DFE Dataset

The average FER accuracy (i.e., WAR) of the EST was
compared with the state-of-the-art methods, including
DeRL [33], FAN [25], ICNP [40], C3D [30], FER-
Att+Rep+Cls [24], and C3D-LSTM [26] in Table 2. Com-
pared to the best sequence-based result (ICNP) and the
baseline Transformer, the proposed EST improved the
WAR over 4.97% and 2.57%, respectively. This reveals
that our method can effectively discover the more ben-
eficial emotion-related cues by modeling the long-range
emotion movement relation in videos.

4.3.2 Experiments on the MMI Dataset

In comparison with the state-of-the-art video-based
FER methods, Table 3 lists the WAR on the MMI
dataset using deep learning-based methods with spa-
tial feature representation (i.e., AUDN [20], DeRL [33],
LSTM [15], Ensemble Network [29], SAANet [19],
WMCNN-LSTM [38], WMDCNN [38]), hand-crafted
feature based methods (i.e., collaborative expression rep-
resentation (CER) extracted from the apex frames and
LPQ-TOP [13] extracted from the whole sequence), and
our EST. As shown in the table, the proposed EST out-
performed existing state-of-the-art FER methods. Since
most of the existing methods do not use the UAR metric
on MMI, we can only reproduce some of the methods that
provide source code for UAR comparisons. Compared to
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Table 4: Comparison results on AFEW 8.0 dataset. Note:
the highest result is highlighted in bold while ∗ indicates
the result is reproduced by author.

Methods Feature setting WAR(%) UAR(%)
FAN [25] frame-based 51.18 -
HoloNet [34] frame-based 44.57 -
DSN-HoloNet [12] frame-based 46.47 -
DSN-VGGFace [7] frame-based 48.04 -
C3D [30] sequence-based 46.72 43.75
DenseNet-161 [18] sequence-based 51.44 -
ResNet18+GRU [10] sequence-based 49.34 45.12
Emotion-BEEU [16] sequence-based 52.49 -
3D ResNet18 [9] sequence-based 45.67 42.14
Former-DFER [39] sequence-based 50.92 47.42
Transformer(Baseline)∗ sequence-based 49.72 43.95
Our EST snippet-based 54.26 49.57

the second best method, Ensemble Network [29], the EST
improved the WAR of 1.04%. Compared to the frame-
based method FAN [25], our EST achieved a 4.75% and
6.01% boost on the UAR and WAR, respectively.

4.3.3 Experiments on the AFEW Dataset

Although accuracies of Disgust and Fear are relatively
lower than the other categories, our method still out-
performs other methods in recognizing both emotions.
This shows that our proposed EST method which con-
tains AA-SFE for extracting visual features and SSOP for
refining the estimation of attention weights is more ef-
fective for difficult emotion recognition classes.This may
be caused by better modeling the relations of subtle ex-
pression movements between snippets. Table 4 reports
the WAR and UAR using the EST and state-of-the-art
methods. It demonstrates that our method achieves the
best performance with great robustness on both WAR
and UAR metrics, meanwhile, has obvious advantages
over other algorithms (e.g. for the second best method
Former-DFER [39], achieving relative increase of 6.16%
on WAR and 4.34% on UAR) on the in-the-wild expres-
sion dataset. Additionally, our EST improved the base-
line (Transformer), achieving a relative WAR increase of
8.37%, which can validate the robustness of our method.

Table 5: Comparison results on DFEW dataset. Note: the
highest result is highlighted in bold while ∗ indicates the
result is reproduced by author

Methods Feature setting WAR(%) UAR(%)
3D ResNet-18,EC-STFL [14] sequence-based 56.51 44.73
C3D,EC-STFL [14] sequence-based 55.50 45.10
P3D,EC-STFL [14] sequence-based 56.48 45.22
R3D18,EC-STFL [14] sequence-based 56.19 45.05
VGG11+LSTM,EC-STFL [14] sequence-based 56.25 44.78
Former-DFER [39] sequence-based 65.70 53.69
Transformer(Baseline)∗ sequence-based 63.85 50.39
Our EST snippet-based 65.85 53.94

4.3.4 Experiments on the DFEW Dataset

The highest accuracy is 86.87% of Happiness followed
by Anger, which achieves 71.84%. Although we only
achieved 5.52% accuracy in the Disgust category due to
the huge imbalance of categories in the DFEW (only oc-
cupies 1.22% in the DFEW dataset), the compared results
in Table 5 show that our method is still far superior to
other algorithms. More detailed comparison results can
be shown in Table 5. Compared to the second best method
Former-DFER [39], both the WAR and UAR of our EST
achieved significant improvement, e.g., having an relative
increase of 0.23% on WAR and 0.46% on UAR).

4.3.5 Confusion Matrices

Fig. 4(a) shows the confusion matrix of BU-3DFE for
video FER by using our method. Among the six expres-
sions, the highest accuracy are 95.0% of Happiness and
Surprise, while the lowest accuracy is 80.0% for Fear,
which has the least amount of facial expression move-
ment and is difficult to distinguish with Disgust. The
average FER accuracy is 88.17%. Fig. 4(b) depicts the
confusion matrix of MMI for video FER by using our
method. We achieved 100% accuracy in Surprise cate-
gory. The average accuracy of FER is 92.5%. Fig. 4(c)
shows the confusion matrix on the challenging AFEW
dataset. The average accuracy of FER achieved 54.26%.
The highest accuracy is 87.04% of Happiness followed by
Anger and Neutral, which respectively reach 78.69% and
75.81%. Fig. 4(d) shows the confusion matrix of FER on
the large-scale DFEW dataset. The average accuracy of
FER achieved 65.85% by using our EST.

Despite the effectiveness of our method, we can ob-
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Figure 4: The confusion matrices for video-based FER on
the four datasets.

serve that our method has some bad predictions on the
DFEW and AFEW datasets. With careful investigation,
we found that most of these bad cases of our method is
due to the inter-class confusion, e.g., the confusion be-
tween Disgust and Neutral or between Fear and Anger.
We analyze that this inter-class confusions are mostly re-
lated to both extremely subtle visual differences and very
unbalanced data distributions in the dataset. Such inter-
class confusions are mostly related to both extremely sub-
tle visual differences and unbalanced data distributions in
the dataset. For subtle visual differences, although our
method can already model plenty of subtle visual differ-
ences and achieve state-of-the-art performance, we be-
lieve that there are still some cases that require further in-
vestigation and research. Regarding the unbalanced distri-
butions, we found that the numbers of occurrences of dif-
ferent emotion classes in a dataset like DFEW and AFEW
are quite different, which results in a typical long-tail
problem and increases the difficulty of learning on mi-
nority classes. For example, in a dataset, the Disgust may
have only a few hundreds of examples for training, while

Table 6: Ablation study of the proposed EST. Impact
of integrating our different components (AA-SFE and
SSOP) into the baseline Transformer on the BU-3DFE
dataset.

Transformer AA-SFE SSOP Params(M) MACs(G) WAR/UAR(%)
✓ 34.37 63.85 85.60
✓ ✓ 34.37 63.88 87.12
✓ ✓ ✓ 42.78 63.89 88.17

(a) (b)

Figure 5: The learning procedure for the EST with dif-
ferent components during training and testing. (a) The
training loss variation in terms of epochs, (b) the testing
accuracy variation in terms of epochs.

the Neutral may have several thousands. However, we be-
lieve that the study of such unbalanced data and the long-
tail problem is simply beyond the topic of our paper. We
will try to tackle this problem in the future.

4.4 Ablation Experiment and Further
Analysis

4.4.1 Effects of Different Components

To better understand the role of each module in the
proposed EST, Table 6 presents the ablation results of
the gradual addition AA-SFE and SSOP components to
the baseline Transformer framework on the BU-3DFE
dataset. The Transformer achieved a video-based FER
accuracy (see WAR in the Table) of 85.60%. The fur-
ther integration of AA-SFE improved the accuracy to
87.12%, as the AA-SFE aids in the extraction of snippet-
level features via jointly hierarchical attentions. Thanks
to learning the order sensitive representation, the addition
of SSOP resulted in an increase of 1.05%.

We also show the convergence performance of the EST
with different components in Fig. 5. The green dotted
curves belong to the baseline Transformer. From the view
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Table 7: Ablation study of different attention selection in
AA-SFE. The best results are highlighted in bold.

Different attention Params(M) WAR/UAR(%)
w/o attention 34.37 85.60
self-attention 42.78 87.63

SE-like attention [11] 43.30 87.46
Our hierarchical attention 42.78 88.17

of the decline rates of training losses, obviously, the grad-
ual addition of AA-SFE and SSOP improved the Trans-
former performance on both training speed and stability.
Meanwhile, the proposed EST with AA-SFE and SSOP
is easier to achieve higher accuracy on the test set. In the
experimental comparison, we make sure that the training
stops once the method converges. In this figure, we only
show the statistics with epoch 70 due to the limitation
space.

Table 7 lists the recognition results with different atten-
tion selection in the AA-SFE. Obviously, two-level hier-
archical attention used in AA-SFE achieved the best per-
formance without any computational cost, helping to de-
scribe more informative snippet features. In addition, we
use different starting frames to obtain snippets for FER, so
that the same frame can have different locations in a snip-
pet according to different starting frames. We have stud-
ied the final recognition performance with or without us-
ing the AA-SFE. Fig. 6 shows that our AA-SFE achieved
consistently high emotion recognition performance with
a variance of 0.669, while the setting without AA-SFE
achieved vastly degraded performance with a variance of
1.2.

4.4.2 Effects of SSOP Head and Permutation Order

Fig. 7 shows more analysis about the effect of the SSOP
in the EST. In particular, Fig. 7(a) presents the distribu-
tion of the index of the snippet with the highest atten-
tion weight in EST with and without SSOP, respectively.
Without SSOP (see the dark-blue column in Fig. 7(a)), we
can observe that the EST always focused on the 3-rd snip-
pet, which usually contains the peak changes in each test
video. Alternatively, the SSOP can make EST distribute
similar attention to all the snippets. We further illustrate
the SSOP modeling subtle facial expression movements
in Fig. 7(b)(c). The results show that the SSOP helps

(a) w/o AA-SFE (b) w/ AA-SFE

Figure 6: Compare with AA-SFE and without AA-SFE
under different start frames. (a) Without AA-SFE. (b)
With AA-SFE. The dashed black lines represent the mean
FER accuracy.

snippets
(a) Comparison of index distributions 
of the snippet with and without SSOP 

(b) w/o SSOP (c) Our model

predict: Disgust GT: Fear predict: Fear GT: Fear

GT: FearGT: Fearpredict: Sad predict: Fear

Figure 7: The effects of SSOP. (a) Comparison of in-
dex distributions of the snippet with the highest attention
weight with and without SSOP in EST, where the horizon-
tal axis shows the seven snippets in videos and the verti-
cal axis shows the number of the highest attention weights
received on different snippets. (b) Comparison of model-
ing subtle facial expression movements without SSOP. (c)
Comparison of modeling subtle facial expression move-
ments with SSOP. From the results, we can observe that
the EST without SSOP always focused on the 3-rd snip-
pet in each video, while the EST with SSOP helps obtain
comprehensively attentional weights according to expres-
sion changes.

obtain more discriminative representation by comprehen-
sively making the Transformer model inter-snippet visual
changes.

To further evaluate the effect of the types of shuffle or-
der in SSOP learning, Fig.8 presents the variation curves
of FER accuracy and snippet order prediction accuracy
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Figure 8: The influence of the types of shuffle order for
FER accuracy and order prediction accuracy on the BU-
3DFE dataset. (a) FER accuracy, (b) snippet order predic-
tion accuracy.

according to the number of shuffle order types on the BU-
3DFE dataset. As shown in Fig.8 (a)(b), when the num-
ber of the types is 10, both the FER accuracy and snippet
order prediction accuracy reach the highest 88.17% and
55.43%, respectively. Therefore, during the training, we
set the types of shuffle order to 10.

predict: Sadness GT: Fear

predict: Fear GT: Fear

predict: Happiness GT: Happiness

predict: Happiness GT: Happiness

predict: Anger GT: Anger

predict: Anger GT: Anger

(a) Transformer

(b) Our EST

Figure 9: Comparison of modeling subtle facial expres-
sion movements in FER on the BU-3DFE, MMI, AFEW,
DFEW dataset. (a) vanilla Transformer, (b) our EST.
Note: the green square is located at the position of the
most informative expression snippet with the most atten-
tion weight.

In addition, we present the prediction accuracy of the
shuffle order for the SSOP in Table 8. As shown in the
Table, even on the challenging DFEW dataset, the SSOP
achieves the accuracy of 46.1% for predicting 10 different
permutation orders used in the training. We would like
to mention that the accuracy is supposed to be not very

Table 8: The prediction accuracy of the shuffle order for
the SSOP on four datasets.

Datasets BU-3DFE MMI AFEW DFEW
Accuracy (%) 55.4 45.0 50.9 46.1

Table 9: Study of SSOP with perform zero-padding to the
frames in the middle of a video in BU-3DFE.

w/o SSOP w/ SSOP
WAR(%) 82.5 87.5

high because the shuffled order is mainly used to break the
discrepancy between the emotion recognition and some
specific snippet, and the obtained results align with this
goal to some extents.

To present additional empirical evidence of how SSOP
works, we performed an extra experiment. In this experi-
ment, we perform zero-padding to the frames in the mid-
dle of a video, so that a model cannot use these frames
to perform recognition. Then, we test the results of using
or not using the the SSOP are listed in Table. 9. We can
find that without frames from middle of the input video,
SSOP still performs favorably while normal Transformer
without SSOP cannot recognize the emotion correctly.

4.4.3 Effects of Snippet Settings

In Fig. 10, we present the FER accuracy curves, which
effected by the number of frames in per snippet and the
number of snippets in per video. As shown in the Fig. 10
(a), the accuracy reached the highest 88.17% when we
set the number of frames of each snippet to 5. Fig. 10
(b) shows that the accuracy reached the highest when the
number of snippets in per video is set to 7. Thus, in our
study, n = 7 and j = 5.

Besides, we also observe that different snippet amounts
and snippet lengths only resulted in minor performance
changes, suggesting that these hyperparameters are less
important to our method. Hence, thanks to the long-range
relation modeling ability of the Transformer, our EST can
be easily extended to adapt to videos of almost any length
upon proper training. According to the snippet generation
process as described in Sec.4.2, we would like to further
clarify that this procedure is quite different from a sliding
window strategy. Our snippet is collected mainly based
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Figure 10: The impact of the number of frames in per
snippet and the number of snippets in per video for FER
on the BU-3DFE dataset. (a) The effect of the number
of frames in per snippet, (b) the effect of the number of
expression snippets in per video.

on sampling, while the sliding window processes input
in a comprehensive and sequential order. Different from
the aforementioned snippet generation process, for a slid-
ing window strategy, it would first collect a few frames
within the time window for processing, and then slide by
a step of one frame for later processing. The collections
of frames between two adjacent sliding steps then highly
overlap with each other, and all frames within the window
would be exhaustively considered for processing. We be-
lieve this could generate plenty of abundant and trivial in-
formation that might affect the recognition performance.
This hypothesis can be partially supported by the ablation
study presented in Figure 10 in which using more frames
or more snippets does not contribute to a better perfor-
mance. For training, the seven snippets were shuffled in
a random order (the frame order within each snippet re-
mained unchanged). For test, we only used the normal
snippet order as input for robust FER.

4.4.4 Effects of Meta-parameter Settings in Trans-
former

Fig. 11 presents the FER accuracy curves, which effected
by the number of encoder layers and attention head in the
Transformer architecture. As shown from the results, the
accuracy achieved to the highest 88.17% when we set the
number of encoder layers to 3 and the number of attention
heads to 4.

Figure 11: The influence of meta-parameter setting in
Transformer on the BU-3DFE dataset.(a) The effect of the
number of layers, (b) the effect of the number of heads.

4.4.5 Visualization Results of Expression Changes
and Representations

Fig. 9 shows the comparison of expression relation curves
for modeling subtle facial expression movements between
the vanilla Transformer and the proposed EST on four
videos from the four datasets. From the Fig. 9(a), the
vanilla Transformer shows to only focus on the frames
with peak expression patterns, which can be easily af-
fected by noises such as head poses and other non-
expression changes. Instead, by decomposing videos
into snippets, although the changes of expression move-
ments of intra-/inter-snippets are very subtle in a video,
our EST can attend on on all expression snippet changes
more comprehensively and can effectively locate the most
informative expression snippet by the modelled expres-
sion attention weights (see the values of the Ordinate in
Fig. 9(b)). This demonstrated that the EST can effectively
tackle the problem of the vanilla Transformer and help
achieve more robust modeling of subtle facial changes in
different videos.

In Fig. 12, we visualized the emotion representations
with different settings in a 2D feature space by using the
t-SNE [23] on the four datasets. In Fig. 12, we visualized
the emotion representations with different settings in a 2D
feature space by using the t-SNE [23] on the four datasets.
Following existing work [39], we randomly chose one of
the folds for visualization on datasets that were conducted
cross-validation. The visualizations include the following
three cases: video features extracted by FAN [25] (see
Fig. 12(a)), sequence-based video features extracted by
LSTM [15] (see Fig. 12(b)), emotion-rich representations
by our EST (see Fig. 12(c)). Obviously, compared the
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 (c) Our EST

(a) FAN

(b) LSTM

MMIDFEW BU3DAFEW

Disgust Anger Fear Happiness SurpriseSadness

Figure 12: The comparison of different features in 2D
space by t-SNE visualization. (a) The frame-based fea-
tures learned by FAN [25], (b) the sequence-based fea-
tures learned by LSTM, (c) the unified salient emotion
features learned by EST. (Figure best viewed in color)

other emotion features, we can observe that the compre-
hensive and robust expression representation learned by
the EST includes more visual change cues and can sig-
nificantly be separated according to different expression
categories.

4.4.6 Analysis on Model Complexity

Table 10 reports model parameters and computational
costs of spatial-temporal learning methods on the AFEW
dataset. In general, our EST has the best performance
(accuracy of 54.26%) with a small computational cost
(63.89G MACs) and real-time speed (412 fps), which
means that the proposed method exhibits improved accu-
racy and efficiency, achieving a better trade-off between
accuracy and efficiency. In addition, model sizes and
computational complexities are decided by different fac-
tors. For example, the model size is mainly decided by
the factors like the numbers of network layers, the sizes
of convolutional kernels, the dimensions of input/output
features, and so on. On the other hand, the computational
complexity of a neural network can be decided by the fac-
tors like input image size, non-parametric operations like
self-attention operations, and so on. As a result, it can be
possible that the model sizes of two networks are different
(e.g., 34.4M vs 42.8M), but their computational complex-
ities are similar (e.g., 63.88G MACs vs. 63.89G MACs).

Table 10: Comparison of model complexity and effi-
ciency.

Methods Input Backbone Params(M) MACs(G) fps WAR(%)
FERAtt [24] Frame ResNet-18 67.08 13.56 75 37.22
Dense161 [18] Video DenseNet-161 26.52 272.47 47 51.44
VGG16TPSA [1] Video VGG16 14.72 537.61 552 49.00
Our EST Video ResNet-18 42.78 63.89 412 54.26

Table 11: Cross-validation comparison with state-of-the-
art methods on DFEW → AFEW and BU-3DFE →
AFEW. The best results are in bold.

Cross-validation Methods WAR(%)

DFEW → AFEW Transformer(baseline) 48.86
EST 51.14

BU-3DFE → AFEW Transformer(baseline) 19.66
EST 25.17

4.4.7 Evaluation on cross-databases

In addition, to verify the generalizability of EST, cross-
database validation was conducted on the challenging in-
the-wild BU-3DFE, DFEW and AFEW datasets. Images
from the BU-3DFE and DFEW dataset were used for
training, respectively, whereas images from the AFEW
testing set were used for testing without fine-tuning. Ta-
ble 11 presents the comparison results of the proposed
model and state-of-the-art methods, including vanilla
Transformer [32]. Although the training and testing
datasets have different settings (e.g., scene, pose, light-
ing, ethnicity, age, etc.), the results of EST demonstrate
that it is reusable for facial expression recognition on
the AFEW dataset. Our method achieved an accuracy
of 51.14%,25.17%, gaining 2.28%, 5.51%, improvements
over the recognition accuracy of vanilla Transformer, re-
spectively.

5 Conclusions and Future Works
In this paper, we have carefully explored the challenges
and difficulties when applying Transformer to the video-
based facial expression recognition task. In particular,
we found that the trivial or irrelevant information and
extremely subtle visual changes could affect the perfor-
mance of Transformer to extract useful features and make
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accurate predictions. By addressing these issues, we pro-
pose to apply snippets to decompose the modeling of fa-
cial changes in the whole video into the modeling of a
series of sub-videos, so that a Transformer can find it
easier to learn useful information for robust expression
recognition. As a result, we obtain an expression snip-
pet Transformer (EST). In our proposed EST, we further
introduce a novel attention-augmented snippet feature ex-
traction (AA-SFE) module to augment the feature extrac-
tion of each snippet by modeling inter-snippet relations
effectively. Besides, we also developed a shuffled snip-
pet order prediction (SSOP) module to help break the de-
pendency of expression prediction to some specific snip-
pet locations by shuffling the snippets. In practice, with
the AA-SFE and SSOP, our EST achieved state-of-the-
art performance on four challenging datasets (BU-3DFE,
MMI, AFEW, and DFEW). To the other researchers in
the community, we believe that our explorations can bring
new insights about how to exploit the impressive relation
modeling power of a Transformer more effectively for ex-
pression recognition.

Despite the effectiveness of our method, we found
that there are still some rooms that our EST could be
improved. For example, some extremely minor visual
changes are still difficult to be captured by current meth-
ods. Besides, the long-tail problem caused by unbalanced
data distribution also exist in the video-based facial ex-
pression recognition and affected the methods’ perfor-
mance. Therefore, in the future, we will introduce self-
supervised learning mechanisms into our Transformers to
further capture the emotion-rich features as well as ex-
plore information from unlabeled data for better capabili-
ties.
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